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TO THE STUDENT

Authors of books live with the hope that someone actually reads them. Contrary to 
what you might believe, almost everything in a typical college-level mathematics 
text is written for you and not the instructor. True, the topics covered in the text are 
chosen to appeal to instructors because they make the decision on whether to use it 
in their classes, but everything written in it is aimed directly at you the student. So 
I want to encourage you—no, actually I want to tell you—to read this textbook! But 
do not read this text as you would a novel; you should not read it fast and you should 
not skip anything. Think of it as a workbook. By this I mean that mathematics should workbook. By this I mean that mathematics should work
always be read with pencil and paper at the ready because, most likely, you will have 
to work your way through the examples and the discussion. Before attempting any 
problems in the section exercise sets, work through all the examples in that section. all the examples in that section. all
The examples are constructed to illustrate what I consider the most important aspects 
of the section, and therefore, re�ect the procedures necessary to work most of the 
problems. When reading an example, copy it down on a piece of paper and do not 
look at the solution in the book. Try working it, then compare your results against 
the solution given, and, if necessary resolve any differences. I have tried to include 
most of the important steps in each example, but if something is not clear you should 
always try—and here is where the pencil and paper come in again—to �ll in the 
details or missing steps. This may not be easy, but it is part of the learning process. 
The accumulation of facts followed by the slow assimilation of understanding simply 
cannot be achieved without a struggle.

Speci�cally for you, a Student Resource Manual (SRM) is available as an opSRM) is available as an opSRM -
tional supplement. In addition to containing solutions of selected problems from the 
exercises sets, the SRM contains hints for solving problems, extra examples, and a 
review of those areas of algebra and calculus that I feel are particularly important 
to the successful study of differential equations. Bear in mind you do not have to 
purchase the SRM; you can review the appropriate mathematics from your old pre-
calculus or calculus texts.

In conclusion, I wish you good luck and success. I hope you enjoy the text and 
the course you are about to embark on—as an undergraduate math major it was one 
of my favorites because I liked mathematics that connected with the physical world. 
If you have any comments, or if you �nd any errors as you read/work your way 
through the text, or if you come up with a good idea for improving either it or the 
SRM, please feel free to contact me through Cengage Learning:

spencer.arritt@cengage.com.

TO THE INSTRUCTOR

In case you are examining this text for the �rst time, A First Course in Differen-
tial Equations with Modeling Applications, Eleventh Edition, is intended for a one-
semester or one-quarter course in ordinary differential equations. The longer version 
of the text, Differential Equations with Boundary-Value Problems, Ninth Edition,
can be used for either a one- or two-semester course that covers ordinary and partial 
differential equations. This text contains six additional chapters. For a one-semester 

Preface
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course, it is assumed that the students have successfully completed at least two semes-
ters of calculus. Since you are reading this, undoubtedly you have already examined 
the table of contents for the topics that are covered. You will not �nd a “suggested syl-
labus” in this preface; I will not pretend to be so wise as to tell other teachers what to 
teach. I feel that there is plenty of material here to choose from and to form a course 
to your liking. The text strikes a reasonable balance between the analytical, qualita-
tive, and quantitative approaches to the study of differential equations. As far as my 
“underlying philosophy” goes, it is this: An undergraduate text should be written with 
the students’ understanding kept �rmly in mind, which means to me that the material 
should be presented in a straightforward, readable, and helpful manner, while keep-
ing the level of theory consistent with the notion of a “�rst course.”

For those who are familiar with the previous editions, I would like to mention 
a few improvements made in this edition. Many exercise sets have been updated by 
the addition of new problems. Some of these problems involve new and, I think, 
interesting mathematical models. Additional examples, �gures, and remarks have 
been added to many sections. Throughout the text I have given a greater emphasis 
to the concepts of piecewise-linear differential equations and solutions that involve 
nonelementary integrals. Finally, Appendix A, Integral-De�ned Functions, is new 
to the text.

Student Resources
 ● Student Resource Manual (SRM), prepared by Warren S. Wright and 

Roberto Martinez (ISBN 978-1-305-96573-7, accompanies A First Course 
in Differential Equations with Modeling Applications, Eleventh Edition, and 
ISBN 978-1-305-96581-2 accompanies Differential Equations with Boundary-
Value Problems, Ninth Edition), provides important review material from 
algebra and calculus, the solution of every third problem in each exercise 
set (with the exception of the Discussion Problems and Computer Lab 
Assignments), relevant command syntax for the computer algebra systems 
Mathematica and Maple, and lists of important concepts, as well as helpful 
hints on how to start certain problems.

 ● MindTap for A First Course in Differential Equations with Modeling 
Applications, Eleventh Edition, is a digital representation of your course that 
provides you with the tools you need to better manage your limited time, stay 
organized, and be successful. You can complete assignments whenever and 
wherever you are ready to learn with course material specially customized for 
you by your instructor and streamlined in one proven, easy-to-use interface. 
With an array of study tools, you’ll get a true understanding of course concepts, 
achieve better grades, and set the groundwork for your future courses. Learn 
more at www.cengage.com/mindtap.

Instructor Resources
 ● Instructor’s Solutions Manual (ISM(ISM( ), prepared by Warren S. Wright and 

Roberto Martinez, provides complete worked-out solutions for all problems  
in the text. It is available through the Instructor Companion website at www 
.cengage.com.

 ● Cengage Learning Testing Powered by Cognero is a �exible, online system 
that allows you to author, edit, and manage test bank content, create multiple 
test versions in an instant, and deliver tests from your learning management 
system (LMS), your classroom, or wherever you want. Cognero is available 
online at www.cengage.com/login.

 ● Turn the light on with MindTap for A First Course in Differential Equations 
with Modeling Applications, Eleventh Edition. Through personalized paths of 
dynamic assignments and applications, MindTap is a digital learning solution 
and representation of your course.

The Right Content: With MindTap’s carefully curated material, you get the 
precise content and groundbreaking tools you need for every course you teach.
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Personalization: Customize every element of your course—from rearranging 
the Learning Path to inserting videos and activities.

Improved Work�ow: Save time when planning lessons with all of the 
trusted, most current content you need in one place in MindTap.

Tracking Students’ Progress in Real Time: Promote positive outcomes 
by tracking students in real time and tailoring your course as needed based on 
the analytics.

Learn more at www.cengage.com/mindtap.
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2

1.1 Definitions and Terminology 
 1.2 Initial-Value Problems 
1.3 Differential Equations as Mathematical Models

C H A P T E R  1  I N  R E V I E W

T he words differential and differential and differential equations suggest solving some kind of 

equation that contains derivatives y9, y0, Á . Analogous to a course in 

algebra, in which a good amount of time is spent solving equations such 

as x2 1 5x 1 4 5 0 for the unknown number x, in this course one of our tasks 

will be to solve differential equations such as y0 1 2y9 1 y 5 0 for an unknown 

function y 5 �(x). As the course unfolds, you will see there is more to the study of 

differential equations than just mastering methods that mathematicians over past 

centuries devised to solve them. But �rst things �rst. In order to read, study, and be 

conversant in a specialized subject you have to learn some of the terminology of that 

discipline. This is the thrust of the �rst two sections of this chapter. In the last section 

we brie�y examine the link between differential equations and the real world.

1
Introduction to Differential Equations
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INTRODUCTION The derivative dydyd ydxdxd  of a function y 5 �(x) is itself another 
function �9(x) found by an appropriate rule. The exponential function y 5 e0.1x2

 is 
differentiable on the interval (2`, `) and by the Chain Rule its �rst derivative is 
dydyd ydxdxd 5 0.2x.2x.2 e0.1x2

. If we replace e0.1x2
 on the right-hand side of the last equation by 

the symbol y, the derivative becomes

dydyd

dxdxd
5 0.2x.2x.2 yxyx . (1)

Now imagine that a friend of yours simply hands you equation (1)—you have no idea 
how it was constructed—and asks, What is the function represented by the symbol y? 
You are now face to face with one of the basic problems in this course:

How do you solve an equation such as (1) for the function y = �(x)?

A DEFINITION The equation that we made up in (1) is called a differential
equation. Before proceeding any further, let us consider a more precise de�nition 
of this concept.

1.1 Definitions and Terminology  

DEFINITION 1.1.1 Differential Equation

An equation containing the derivatives of one or more unknown functions (or 
dependent variables), with respect to one or more independent variables, is 
said to be a differential equation (DE).

To talk about them, we shall classify differential equations according to type, order,
and linearity.

CLASSIFICATION BY TYPE If a differential equation contains only ordinary 
derivatives of one or more unknown functions with respect to a single independent 
variable, it is said to be an ordinary differential equation (ODE). An equation 
involving partial derivatives of one or more unknown functions of two or more inde-
pendent variables is called a partial differential equation (PDE). Our �rst example 
illustrates several of each type of differential equation.

 EXAMPLE 1 Types of Differential Equations

(a) The equations
an ODE can contain more 

than one unknown function
p p

dydyd

dxdxd
1 5y 5 ex,

d2y

dxdxd 2 2
dydyd

dxdxd
1 6y 5 0, and

dxdxd

dt
1

dydyd

dt
5 2x 1 y (2)

are examples of ordinary differential equations.

(b) The following equations are partial differential equations:*

−2u

−x2 1
−2u

−y2 5 0,
−2u

−x2 5
−2u

−t2
2 2

−u

−t
,

−u

−y
5 2

−v

−x
. (3)

*Except for this introductory section, only ordinary differential equations are considered in A First Course 
in Differential Equations with Modeling Applications, Eleventh Edition. In that text the word equation
and the abbreviation DE refer only to ODEs. Partial differential equations or PDEs are considered in the 
expanded volume Differential Equations with Boundary-Value Problems, Ninth Edition.

. DEFINITIONS AND TERMINOLOGY 3
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Notice in the third equation that there are two unknown functions and two indepen-
dent variables in the PDE. This means u and v must be functions of two or more
independent variables. .

NOTATION Throughout this text ordinary derivatives will be written by using 
either the Leibniz notation dyydx, d2yydx2, d3yydx3, . . . or the prime notation y9, y0, 
y-, . . . . By using the latter notation, the �rst two differential equations in (2) can be 
written a little more compactly as y9 + 5y = ex and x and x y0 − y9 + 6y = 0. Actually, the 
prime notation is used to denote only the �rst three derivatives; the fourth derivative 
is written y(4) instead of y00. In general, the nth derivative of y is written dnyydxn or 
y(n). Although less convenient to write and to typeset, the Leibniz notation has an 
advantage over the prime notation in that it clearly displays both the dependent and 
independent variables. For example, in the equation

d 2x2x2
–––
dt2

1 16x 5 0

unknown function
or dependent variable

independent variable

it is immediately seen that the symbol x now represents a dependent variable, 
whereas  the independent variable is t. You should also be aware that in physical 
sciences and engineering, Newton’s dot notation (derogatorily referred to by some 
as the “�yspeck” notation) is sometimes used to denote derivatives with respect 
to time t. Thus the differential equation d2sydt2 = −32 becomes s̈ = −32. Partial 
derivatives are often denoted by a subscript notation indicating the indepen-
dent variables. For example, with the subscript notation the second equation in (3) 
becomes uxx = utt − 2ut.

CLASSIFICATION BY ORDER The order of a differential equation (either ODE 
or PDE) is the order of the highest derivative in the equation. For example,

�rst ordersecond order

1 5(     )3
2 4y 5 ex

dy
–––
dx     dx     

d 2y2y2
––––
dx2

is a second-order ordinary differential equation. In Example 1, the �rst and third 
equations in (2) are �rst-order ODEs, whereas in (3) the �rst two equations are 
second-order PDEs. A �rst-order ordinary differential equation is sometimes written 
in the differential form

M(x, y) dxdxd 1 N(N(N x, y) dydyd 5 0.

 EXAMPLE 2  Differential Form of a First-Order ODE

If we assume that y is the dependent variable in a �rst-order ODE, then recall from 
calculus that the differential dy is de�ned to be dydyd 5 y9dxdxd .

(a) By dividing by the differential dx an alternative form of the equation dx an alternative form of the equation dx
(y 2 x) dxdxd 1 4x dydyd 5 0 is given by

y 2 x 1 4x
dydyd

dxdxd
5 0 or equivalently 4x

dydyd

dxdxd
1 y 5 x. 

4 CHAPTER  INTRODUCTION TO DIFFERENTIAL EQUATIONS
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(b) By multiplying the differential equation 

6xy
dydyd

dxdxd
1 x2 1 y2 5 0

by dxdxd  we see that the equation has the alternative differential form

(x2 1 y2) dxdxd 1 6xy dydyd 5 0. .

In symbols we can express an nth-order ordinary differential equation in one 
dependent variable by the general form

F(x,  y,  y9, . . . , y(n)) 5 0, (4)

where F is a real-valued function of F is a real-valued function of F n + 2 variables: x, y, y9, . . . , y(n). For both 
practical and theoretical reasons we shall also make the assumption hereafter that 
it is possible to solve an ordinary differential equation in the form (4) uniquely 
for the highest derivative y(n) in terms of the remaining n + 1 variables. The dif-
ferential equation

dny

dxdxd n 5 f (x, y, y9, . . . , y(n21)), (5)

where f is a real-valued continuous function, is referred to as the f is a real-valued continuous function, is referred to as the f normal form of (4). 
Thus when it suits our purposes, we shall use the normal forms

dy

dx
5 f (x, y) and

d2y

dx2 5 f (x, y, y9)

to represent general �rst- and second-order ordinary differential equations.

 EXAMPLE 3  Normal Form of an ODE

(a) By solving for the derivative dydyd ydxdxd  the normal form of the �rst-order differential 
equation 

4x
dydyd

dxdxd
1 y 5 x is

dydyd

dxdxd
5

x 2 y

4x
.

(b) By solving for the derivative y0 the normal form of the second-order differential 
equation 

y0 2 y9 1 6 5 0 is y0 5 y9 2 6y. .

CLASSIFICATION BY LINEARITY An nth-order ordinary differential equation (4) 
is said to be linear if F is linear in F is linear in F y, y9, . . . , y(n). This means that an nth-order ODE 
is linear when (4) is an(x(x( )y(n) + an−1(x(x( )y(n−1) + Á + a1(x(x( )y9 + a0(x(x( )y − g(x(x( ) = 0 or

an(x) 
dny

dxdxd n 1 an21(x) 
dn21y

dxdxd n21 1 Á 1 a1(x) 
dydyd

dxdxd
1 a0(x)y 5 g(x). (6)

Two important special cases of (6) are linear �rst-order (n 5 1) and linear second-
order (n = 2) DEs:

a1(x) 
dy

dx
1 a0(x)y 5 g(x)  and a2(x) 

d2y

dx2 1 a1(x) 
dy

dx
1 a0(x)y 5 g(x). (7)

In the additive combination on the left-hand side of equation (6) we see that the char-
acteristic two properties of a linear ODE are as follows:

 ● The dependent variable y and all its derivatives y9, y0, . . . , y(n) are of the 
�rst degree, that is, the power of each term involving y is 1.

 ● The coef�cients a0, a1, . . . , an of y, y9, . . . , y(n) depend at most on the 
independent variable x.

. DEFINITIONS AND TERMINOLOGY 5

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A nonlinear ordinary differential equation is simply one that is not linear. Nonlinear 
functions of the dependent variable or its derivatives, such as sin y or ey9, cannot 
appear in a linear equation.

 EXAMPLE 4 Linear and Nonlinear ODEs

(a) The equations

(y 2 x) dxdxd 1 4x dydyd 5 0, y0 2 2y 1 y 5 0, x3 d3y

dxdxd 3 1 x
dydyd

dxdxd
2 5y 5 ex

are, in turn, linear �rst-, second-, and third-order ordinary differential equations. We linear �rst-, second-, and third-order ordinary differential equations. We linear
have just demonstrated in part (a) of Example 2 that the �rst equation is linear in the 
variable y by writing it in the alternative form 4xy9 + y = x. 

(b) The equations

nonlinear term:
coef�cient depends on y

nonlinear term:
nonlinear function of y

nonlinear term:
power not 1

(1 2 y)y9 1 2y 5 ex, 1 sin y 5 0, and
d 2y2y2
––––
dx2 1 y 2 5 0

d 4y4y4
––––
dx 4

are examples of nonlinear �rst-, second-, and fourth-order ordinary differential equanonlinear �rst-, second-, and fourth-order ordinary differential equanonlinear -
tions, respectively. .

SOLUTIONS As was stated on page 2, one of the goals in this course is to solve, 
or �nd solutions of, differential equations. In the next de�nition we consider the con-
cept of a solution of an ordinary differential equation.

DEFINITION 1.1.2 Solution of an ODE

Any function f, de�ned on an interval I and possessing at least I and possessing at least I n derivatives 
that are continuous on I, which when substituted into an nth-order ordinary 
differential equation reduces the equation to an identity, is said to be a solution
of the equation on the interval.

In other words, a solution of an nth-order ordinary differential equation (4) is a 
function f that possesses at least n derivatives and for which

F(x, �(x), �9(x), . . . , �(n)(x)) 5 0 for all x ix ix n I.

We say that f satis�es the differential equation on I. For our purposes we shall also 
assume that a solution f is a real-valued function. In our introductory discussion we 
saw that y 5 e0.1x2

 is a solution of dyydx = 0.2xy on the interval (−`, `).
Occasionally, it will be convenient to denote a solution by the alternative 

symbol y(x).

INTERVAL OF DEFINITION You cannot think solution of an ordinary differential 
equation without simultaneously thinking interval. The interval I in De�nition 1.1.2 I in De�nition 1.1.2 I
is variously called the interval of de�nition, the interval of existence, the interval 
of validity, or the domain of the solution and can be an open interval (a, b), a closed 
interval [a, b], an in�nite interval (a, `), and so on.

6 CHAPTER  INTRODUCTION TO DIFFERENTIAL EQUATIONS
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1

x

y

1

(a) function y 5 1/x, x ? 0

(b) solution y 5 1/x, (0, ∞)

1

x

y

1

FIGURE 1.1.1 In Example 6 the function 
y = 1yx is not the same as the solution x is not the same as the solution x
y = 1yx

 EXAMPLE 5 Verification of a Solution

Verify that the indicated function is a solution of the given differential equation on 
the interval (−`, `).

(a)
dydyd

dxdxd
5 xyxyx 1/2; y 5 1

16 x4  (b) y0 2 2y9 1 y 5 0; y 5 xex

SOLUTION One way of verifying that the given function is a solution is to see, after 
substituting, whether each side of the equation is the same for every x in the interval.x in the interval.x

(a) From

lefefe tftf {hand side:
dydyd

dxdxd
5

1

16
 (4 (4 ? x3) 5

1

4
x3,

right{hand side: xy1/2 5 x ? 1 1

16
x42

1/2

5 x ? 11

4
x22 5

1

4
x3,

we see that each side of the equation is the same for every real number x. Note that 
y1/2 5 1

4 x2 is, by de�nition, the nonnegative square root of 1
16 x4.

(b) From the derivatives y9 = xex + ex and x and x y0 = xex + 2ex we have, for every real x we have, for every real x

number x,

lefefe tftf {hand side: y0 2 2y9 1 y 5 (xex 1 2ex) 2 2(xex 1 ex) 1 xex 5 0,

right{hand side: 0. .

Note, too, that each differential equation in Example 5 possesses the constant 
solution y 5 0, −` < x < `. A solution of a differential equation that is identically 
zero on an interval I is said to be a I is said to be a I trivial solution.

SOLUTION CURVE The graph of a solution f of an ODE is called a solution 
curve. Since f is a differentiable function, it is continuous on its interval I of de�niI of de�niI -
tion. Thus there may be a difference between the graph of the function f and the 
graph of the solution f. Put another way, the domain of the function f need not 
be the same as the interval I of de�nition (or domain) of the solution I of de�nition (or domain) of the solution I f. Example 6 
illustrates the difference.

 EXAMPLE 6 Function versus Solution

(a) The domain of y = 1yx, considered simply as a function, is the set of all 
real numbers x except 0. When we graph y = 1yx, we plot points in the xy-plane 
corresponding to a judicious sampling of numbers taken from its domain. The 
rational function y = 1yx is discontinuous at 0, and its graph, in a neighborhood 
of the origin, is given in Figure 1.1.1(a). The function y = 1yx is not differen-
tiable at x = 0, since the y-axis (whose equation is x = 0) is a vertical asymptote 
of the graph.

(b) Now y = 1yx is also a solution of the linear �rst-order differential equation x is also a solution of the linear �rst-order differential equation x
xy9 + y = 0. (Verify.) But when we say that y = 1yx is a x is a x solution of this DE, we 
mean that it is a function de�ned on an interval I on which it is differentiable and I on which it is differentiable and I
satis�es the equation. In other words, y = 1yx is a solution of the DE on x is a solution of the DE on x any interval 
that does not contain 0, such as (−3, −1), _

y
_

y
1
2, 10+, (−`, 0), or (0, `). Because the 

solution curves de�ned by y = 1yx for x for x −3 < x < −1 and 1
2 , x , 10 are simply 

segments, or pieces, of the solution curves de�ned by y = 1yx for x for x −` < x < 0 and 
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0 < x < `, respectively, it makes sense to take the interval I to be as large as posI to be as large as posI -
sible. Thus we take I to be either (I to be either (I −`, 0) or (0, `). The solution curve on (0, `) is 
shown in Figure 1.1.1(b). .

EXPLICIT AND IMPLICIT SOLUTIONS You should be familiar with the terms 
explicit functions and implicit functions from your study of calculus. A solution 
in which the dependent variable is expressed solely in terms of the independent 
variable and constants is said to be an explicit solution. For our purposes, let us 
think of an explicit solution as an explicit formula y = f(x) that we can manipulate, 
evaluate, and differentiate using the standard rules. We have just seen in the last 
two examples that y 5 1

16 x4, y = xex, and y = 1yx are, in turn, explicit solutions 
of  dyydx = xy1/2, y0 − 2y9 + y = 0, and xy9 + y = 0. Moreover, the trivial solu-
tion y = 0 is an explicit solution of all three equations. When we get down to the 
business of actually solving some ordinary differential equations, you will see that 
methods of solution do not always lead directly to an explicit solution y = f(x). 
This is particularly true when we attempt to solve nonlinear �rst-order differential 
equations. Often we have to be content with a relation or expression G(x, y) = 0 that 
de�nes a solution f implicitly.

DEFINITION 1.1.3 Implicit Solution of an ODE

A relation G(x, y) = 0 is said to be an implicit solution of an ordinary differen-
tial equation (4) on an interval I, provided that there exists at least one function 
f that satis�es the relation as well as the differential equation on I.

It is beyond the scope of this course to investigate the conditions under which a 
relation G(x, y) = 0 de�nes a differentiable function f. So we shall assume that if 
the formal implementation of a method of solution leads to a relation G(x, y) = 0, 
then there exists at least one function f that satis�es both the relation (that is, 
G(x, f(x)) = 0) and the differential equation on an interval I. If the implicit solution 
G(x, y) = 0 is fairly simple, we may be able to solve for y in terms of x and obtain x and obtain x
one or more explicit solutions. See (iv) in the Remarks.

 EXAMPLE 7 Verification of an Implicit Solution

The relation x2 + y2 = 25 is an implicit solution of the differential equation

dydyd

dxdxd
5 2

x
y

(8)

on the open interval (−5, 5). By implicit differentiation we obtain

d

dxdxd
x2 1

d

dxdxd
y2 5

d

dxdxd
 2 25 or 2x2x2 1 2y

dydyd

dxdxd
5 0. (9)

Solving the last equation in (9) for the symbol dyydx gives (8). Moreover, solving dx gives (8). Moreover, solving dx
x2 + y2 = 25 for y in terms of x yields x yields x y 5 6Ï25 2 x2Ï . The two functions
y 5 �1(x) 5 Ï25 2 x2 and y 5 �2(x) 5 2Ï25 2 x2 satisfy the relation (that is, 
x2 + �1

2 = 25 and x2 + �2
2 = 25) and are explicit solutions de�ned on the interval 

(−5, 5). The solution curves given in Figures 1.1.2(b) and 1.1.2(c) are segments of the 
graph of the implicit solution in Figure 1.1.2(a).

8 CHAPTER  INTRODUCTION TO DIFFERENTIAL EQUATIONS
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FIGURE 1.1.3 Some solutions of DE in 
part (a) of Example 8

y

x

c . 0

c , 0

c 5 0

Because the distinction between an explicit solution and an implicit solution 
should be intuitively clear, we will not belabor the issue by always saying, “Here is 
an explicit (implicit) solution.”

FAMILIES OF SOLUTIONS The study of differential equations is similar to 
that of integral calculus. When evaluating an antiderivative or inde�nite integral 
in calculus, we use a single constant c of integration. Analogously, we shall see 
in Chapter 2 that when solving a �rst-order differential equation F(x, y, y9) 5 0
we usually obtain a solution containing a single constant or parameter c. A solu-
tion of F(x, y, y9) 5 0 containing a constant c is a set of solutions Gsx, y, cd 5 0
called a one-parameter family of solutions. When solving an nth-order differen-
tial equation F(x, y, y9, Á , y(n)) 5 0 we seek an n-parameter family of solutions 
G(x, y, c1, c2, Á , cn) 5 0. This means that a single differential equation can possess 
an in�nite number of solutions corresponding to an unlimited number of choices for 
the parameter(s). A solution of a differential equation that is free of parameters is 
called a particular solution.

The parameters in a family of solutions such as G(x, y, c1, c2, Á , cn) 5 0 are 
arbitrary up to a point. For example, proceeding as in (9) a relation x2 1 y2 5 c
formally satis�es (8) for any constant c. However, it is understood that the relation 
should always make sense in the real number system; thus, if c 5 225 we cannot say 
that x2 1 y2 5 225 is an implicit solution of the differential equation.

 EXAMPLE 8 Particular Solutions

(a) For all real values of c, the one-parameter family y 5 cxcxc 2 x cx cx os x is an explicit x is an explicit x
solution of the linear �rst-order equation 

xyxyx 9 2 y 5 x2 sin x

on the interval (−`, `). (Verify.) Figure 1.1.3 shows the graphs of some particular 
solutions in this family for various choices of c. The solution y = −x cos x, the blue 
graph in the �gure, is a particular solution corresponding to c = 0. 

(b) The two-parameter family y = c1ex + c2xex is an explicit solution of the linear x is an explicit solution of the linear x

second-order equation 

y0 − 2y9 + y = 0

in part (b) of Example 5. (Verify.) In Figure 1.1.4 we have shown seven of the “dou-
ble in�nity” of solutions in the family. The solution curves in red, green, and blue 
are the graphs of the particular solutions y = 5xex (x (x cl = 0, c2 = 5), y = 3ex (x (x cl = 3, 
c2 = 0), and y = 5ex − 2xex (x (x c1 = 5, c2 = 2), respectively. .

FIGURE 1.1.2 An implicit solution and two explicit solutions of (8) in Example 7 .

y

x
5

5

(b) explicit solution

y1 5 25 2ÏÏ255 2255 2Ï25Ï5 2Ï5 2255 2Ï5 2 x2, 52, 52 , x , 5

y

x

5

5

25

(c) explicit solution

y2 5 2ÏÏ25Ï25Ï 2 x2, 25 , x , 5

y

x
5

5

x2 1 y2 5 25

implicit solution(a)(a)(a)

FIGURE 1.1.4 Some solutions of DE in 
part (b) of Example 8

y

x
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